Specific contributions of histone tails and their acetylation to the mechanical stability of nucleosomes.

نویسندگان

  • Brent Brower-Toland
  • David A Wacker
  • Robert M Fulbright
  • John T Lis
  • W Lee Kraus
  • Michelle D Wang
چکیده

The distinct contributions of histone tails and their acetylation to nucleosomal stability were examined by mechanical disruption of individual nucleosomes in a single chromatin fiber using an optical trap. Enzymatic removal of H2A/H2B tails primarily decreased the strength of histone-DNA interactions located approximately +/-36bp from the dyad axis of symmetry (off-dyad strong interactions), whereas removal of the H3/H4 tails played a greater role in regulating the total amount of DNA bound. Similarly, nucleosomes composed of histones acetylated to different degrees by the histone acetyltransferase p300 exhibited significant decreases in the off-dyad strong interactions and the total amount of DNA bound. Acetylation of H2A/H2B appears to play a particularly critical role in weakening the off-dyad strong interactions. Collectively, our results suggest that the destabilizing effects of tail acetylation may be due to elimination of specific key interactions in the nucleosome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Unwrapping and Histone Tail Dynamics in Nucleosome Revealed by Coarse-Grained Molecular Simulations

Nucleosomes, basic units of chromatin, are known to show spontaneous DNA unwrapping dynamics that are crucial for transcriptional activation, but its structural details are yet to be elucidated. Here, employing a coarse-grained molecular model that captures residue-level structural details up to histone tails, we simulated equilibrium fluctuations and forced unwrapping of single nucleosomes at ...

متن کامل

Transcription: Gene control by targeted histone acetylation

A transcriptional regulator in yeast, Gcn5p, activates transcription by targeted acetylation of specific lysine residues in the amino-terminal tails of histones. This targeted modification is restricted to nucleosomes assembled on the promoters of Gcn5p-responsive genes.

متن کامل

Contribution of histone N-terminal tails to the structure and stability of nucleosomes☆☆☆

Histones are the protein components of the nucleosome, which forms the basic architecture of eukaryotic chromatin. Histones H2A, H2B, H3, and H4 are composed of two common regions, the "histone fold" and the "histone tail". Many efforts have been focused on the mechanisms by which the post-translational modifications of histone tails regulate the higher-order chromatin architecture. On the othe...

متن کامل

Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations

Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA b...

متن کامل

Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms

There is a close relationship between histone acetylation and ATP-dependent chromatin remodeling that is not fully understood. We show that acetylation of histone H3 tails affects SWI/SNF (mating type switching/ sucrose non fermenting) and RSC (remodels structure of chromatin) remodeling in several distinct ways. Acetylation of the histone H3 N-terminal tail facilitated recruitment and nucleoso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 346 1  شماره 

صفحات  -

تاریخ انتشار 2005